E216 : Economics of MONEY AND

BANKINC

Second grade

First term

Dr Doaa Akl Ahmed

Associate Professor of Economics

Benha University

Chapter 3

Understanding Interest Rates

Learning outcome

1. Explain the present value concept and the meaning of the term interest rate.
2. Present different ways of measuring the interest rate.
3. Distinguish between the four types of credit market instruments
4. Explain the difference between nominal and real interest rates.
5. Compute the yield to maturity for different credit market instruments.

1. Measuring interest rate

Present value

- A dollar paid to you one year from now is less valuable than a dollar paid to you today. Why?
- You can deposit a dollar in a savings account that earns interest and have more than a dollar in one year.
- After 1 year: you will have $\$ 1 \times(1+\mathrm{i})$.

\$100 Now

\$100 year from now
interest rate $=10 \%$
After 1 year: $\$ 100 \times(1+10 \%)=$
$100+10=110$

1. Measuring interest rate

Some Basic Terminology

Principal: initial value of the loan.
Face value or par value is equal to a bond's price when it is first issued.

Cash flows are the cash payments to the holder of debt instruments.

Maturity date: is the date on which the principal amount of a bond or another debt instrument becomes due and is repaid to the investor.

1. Measuring interest rate

The simple loan: the lender provides the borrower with an amount of funds (called the principal) that must be repaid to the lender at the maturity date, along with an additional payment for the interest.

- Assume that you lend you friend a simple loan $\$ 100$ for one year.
- You would require her to repay the principal of $\$ 100$ in one year s time along with an additional payment for interest say, $\$ 10$.
- Simple interest rate, i, is:

$$
i=\frac{\$ 10}{\$ 100}=0.10=10 \%
$$

1. Measuring interest rate

cash flows $=$ principal $\times(1+i)^{n}$
i : interest rate, $n=$ maturity date

$$
\text { Let } i=.10
$$

In one year $\$ 100 \mathrm{X}(1+0.10)=\$ 110$
In two years $\$ 110 \mathrm{X}(1+0.10)=\$ 121$

$$
\text { or } 100 \mathrm{X}(1+0.10)^{2}
$$

In three years $\$ 121 \mathrm{X}(1+0.10)=\$ 133$

$$
\text { or } 100 \mathrm{X}(1+0.10)^{3}
$$

In n years $\$ 100 \mathrm{X}(1+i)^{n}$

1. Measuring interest rate

- the following timeline shows the cash flows of n years:

- Having \$100 today as having \$110 a year from now or \$121 two years from now (of course, as long as you are sure that the borrower will pay you back).
\checkmark This process is called discounting the future.
$P V=$ today's (present) value
$C F=$ future cash flow (payment)
$i=$ the interest rate

$$
\mathbf{P V}=\frac{C F}{1)^{n}}
$$

2. Measuring present value

Example 1:

With an interest rate of 6 percent, the present value of $\$ 100$ next year is approximately
A) $\$ 106$.
B) $\$ 100$.
C) $\$ 94$.
D) $\$ 92$.

$$
\begin{gathered}
P V=\frac{C F}{(1+i)^{n}} \\
C F=100 \\
\mathrm{i}=6 \% \\
\mathrm{n}=1 \\
P V=\frac{100}{(1+0.06)^{1}}=\frac{100}{1.06}=94.3
\end{gathered}
$$

2. Measuring present value

Example 2: What is the present value of $\$ 500.00$ to be paid in two years if the interest rate is 5 percent?
A) $\$ 453.51$
B) $\$ 500.00$
C) $\$ 476.25$
D) $\$ 550.00$

$$
\begin{gathered}
P V=\frac{C F}{(1+i)^{n}} \\
C F=500 \\
\mathrm{i}=5 \% \\
\mathrm{n}=2
\end{gathered}
$$

$$
P V=\frac{500}{(1+0.05)^{2}}=\frac{500}{1.1025}=453.51
$$

1. Measuring interest rate

- the yield to maturity is the most accurate measure of interest rates.
- Yield to maturity (YTM): is the total expected return of a bond if it is held until the end of its lifetime.
- Different debt instruments have very different cash payments to the holder (known as cash flows) with very different timing.

3.Four Types of Gredit Market Instruments

- Coupon Bond
- Fixed Payment Loan
- Simple Loan
- Discount Bond
- These four types of instruments require payments at different times:

1. Simple loans and discount bonds make payment only at their maturity dates.
2. Fixed-payment loans and coupon bonds have payments periodically until maturity.

3-Four Types of Gredit Market Instruments

- A simple loan the lender provides the borrower with an amount of funds (called the principal) that must be repaid to the lender at the maturity date, along with an additional payment for the interest.

$$
\begin{gathered}
\mathrm{PV}=\text { today's (present) value } \\
\mathrm{CF}=\text { future cash flow (payment) } \\
i=\text { the interest rate } \\
\mathrm{PV}=\frac{\mathrm{CF}}{(1+i)^{n}}
\end{gathered}
$$

3-Four Types of Gredit Market Instruments

A simple loan example:

If Pete borrows $\$ 100$ from his sister and next year she wants $\$ 110$ back from him, what is the yield to maturity on this loan?

The yield to maturity on the loan is 10%.

$$
P V=\frac{C F}{(1+i)^{n}}
$$

where

$$
\begin{aligned}
& P V=\text { amount borrowed }=\$ 100 \\
& C F=\text { cash flow in one year }=\$ 110 \\
& n=\text { number of years } \quad=1
\end{aligned}
$$

Solution

Thus

$$
\begin{aligned}
\$ 100 & =\frac{\$ 110}{(1+i)} \\
(1+i) \$ 100 & =\$ 110 \\
(1+i) & =\frac{\$ 110}{\$ 100} \\
i & =1.10-1=0.10=10 \%
\end{aligned}
$$

3.Four Types of Gredft Market Instruments

- Discount bond (a zero-coupon bond): is bought at a price below its face value (at a discount), and the face value is repaid at the maturity date.
- no interest payments; it just pays off the face value.

$$
\begin{aligned}
& \text { For any one year discount bond } \\
i & =\frac{\mathrm{F}-\mathrm{P}}{P} \\
\mathrm{~F} & =\text { Face value of the discount bond } \\
\mathrm{P} & =\text { current price of the discount bond }
\end{aligned}
$$

$$
i=\frac{1000-900}{900}
$$

3.Four Types of Gredit Market Instruments

- A coupon bond pays the owner of the bond a fixed interest payment (coupon payment) every year until the maturity date, when a specified final amount (face value or par value) is repaid.
- A coupon bond with $\$ 1000$ face value, for example, might pay you a coupon payment of $\$ 100$ per year for ten years and at the maturity date repay you the face value amount of $\$ 1000$.

$$
P=\frac{C}{1+i}+\frac{C}{(1+i)^{2}}+\frac{C}{(1+i)^{3}}+\ldots+\frac{C}{(1+i)^{n}}+\frac{F}{(1+i)^{n}}
$$

where

$$
P=\text { price of coupon bond }
$$

$$
C=\text { yearly coupon payment }
$$

$F=$ face value of the bond
$n=$ years to maturity date

3.Four Types of Gredit Market Instruments

- Fixed-payment loan: the lender provides the borrower with an amount of funds, which must be repaid by making the same payment every period (such as a month) consisting of part of the principal and interest for a set number of years.
- $L V=$ loan value
- $F P=$ fixed yearly payment
- $n=$ number of years until maturity

$$
L V=\frac{F P}{1+i}+\frac{F P}{(1+i)^{2}}+\frac{F P}{(1+i)^{3}}+\cdots+\frac{F P}{(1+i)^{n}}
$$

- The present value of the fixed-payment loan is calculated as the sum of the present values of all payments

4.Distinction between nominal and real interest rates

- Nominal interest rate makes no allowance for inflation
- Real interest rate is adjusted for changes in price level so it more accurately reflects the cost of borrowing.

$$
\begin{gathered}
r=i-\pi \\
r=\text { real interestrate } \\
i=\text { nominal interest rate } \\
\pi=\text { inflation rate }
\end{gathered}
$$

Questions for review

1) The concept of \qquad is based on the common-sense notion that a dollar paid to you in the future is less valuable to you than a dollar today.
A) present value
B) future value
C) interest
D) deflation
2) The present value of an expected future payment the interest rate increases.
A) falls
B) rises
C) is constant
D) is unaffected

Questions for review

5) A \qquad pays the owner a fixed coupon payment every year until the maturity date, when the ___ value is repaid.
A) coupon bond; discount
B) discount bond; discount
C) coupon bond; face
D) discount bond; face
6) If a $\$ 5,000$ coupon bond has a coupon rate of 13 percent, then the coupon payment every year is
A) $\$ 650$.
B) $\$ 1,300$.
C) $\$ 130$.
D) $\$ 13$.

Questions for review

3) An increase in the time to the promised future payment
\qquad the present value of the payment.
A) decreases
B) increases
C) has no effect on
D) is irrelevant to
4) To claim that a lottery winner who is to receive $\$ 1$ million per year for twenty years has won $\$ 20$ million ignores the process of A) face value.
B) par value.
C) deflation.
D) discounting the future.

Questions for review

7) For a 3 -year simple loan of $\$ 10,000$ at 10 percent, the amount to be repaid is
A) $\$ 10,030$.
B) $\$ 10,300$.
C) $\$ 13,000$.
D) $\$ 13,310$.
8) The present value of a fixed-payment loan is calculated as the of the present value of all cash flow payments.
A) sum
B) difference
C) multiple
D) \log
